Publicly available documents
Please download the UltraWire Project Info documents for more information about the project
Project Publications
Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers
Pyry-Mikko Hannula, Antti Peltonen, Jari Aromaa, Dawid Janas, Mari Lundström, Benjamin P. Wilson, Krzysztof Koziol, Olof Forsén
Carbon, Vol. 107, October 2016, Pages 281-287
Abstract
Electrochemical deposition of copper on a carbon nanotube (CNT) fiber from a copper sulfate – sulfuric acid bath was studied in order to produce a carbon nanotube-copper composite wire. The high resistivity of the aerogel-spun fiber causes a non-uniform current distribution during deposition, which results in a drastic drop in the copper nuclei population density as sufficient overpotential is not available beyond a certain distance from the current feed point. Copper was found to fill the pores between CNT bundles from Focused Ion Beam (FIB) cut cross-sections confirming that aqueous based electrolytes can fill micropores between as-spun CNTs in a fiber network. The speed at which copper grows on the fiber surface was identified at ca. 0.08 mm/s with 1mA applied current. The copper cladding showed columnar growth with a grain size a magnitude of order higher than the CNT-Cu region. The resulting composite was found to have specific conductivity similar to that of pure copper i.e 98 % of copper with 0.2 w-% of CNT, exhibiting a ninefold increase from the pure CNT fiber. Self-annealing was shown to decrease the resistance of the composite.
Project Information
This project has been supported by the European Commission under the 7th Framework Programme for Research and Technology Development (Grant Agreement No. 609057).